Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
A clear experimental signature of the population of the lowest triplet state of the methane dication is identified in a photoionization experiment. This state is populated only in valence ionization and is absent when the dication is formed by core ionization followed by Auger-Meitner decay. For valence ionization, the total internal energy of the fragment, formed during the deprotonation of , is evaluated. Notably, the distribution of this internal energy peaks at the same value regardless of the initially populated electronic state of . We find that excited electronic states of are predominantly populated with significant rovibrational excitation. Published by the American Physical Society2025more » « lessFree, publicly-accessible full text available April 1, 2026
-
We present an investigation of the relaxation dynamics of deuterated water molecules after direct photo-double ionization at 61 eV. We focus on the very rare D+ + O+ + D reaction channel in which the sequential fragmentation mechanisms were found to dominate the dynamics. Aided by theory, the state-selective formation and breakup of the transient OD+(a1Δ, b1Σ+) is traced, and the most likely dissociation path—OD+: a1Δ or b1Σ+ → A 3Π → X 3Σ− → B 3Σ−—involving a combination of spin–orbit and non-adiabatic charge transfer transitions is determined. The multi-step transition probability of this complex transition sequence in the intermediate fragment ion is directly evaluated as a function of the energy of the transient OD+ above its lowest dissociation limit from the measured ratio of the D+ + O+ + D and competing D+ + D+ + O sequential fragmentation channels, which are measured simultaneously. Our coupled-channel time-dependent dynamics calculations reproduce the general trends of these multi-state relative transition rates toward the three-body fragmentation channels.more » « less
An official website of the United States government
